Подсчет расстояния с помощью GPS координат

Лях Юлия Михайловна, 344 группа Научный руководитель: А.М. Боташ

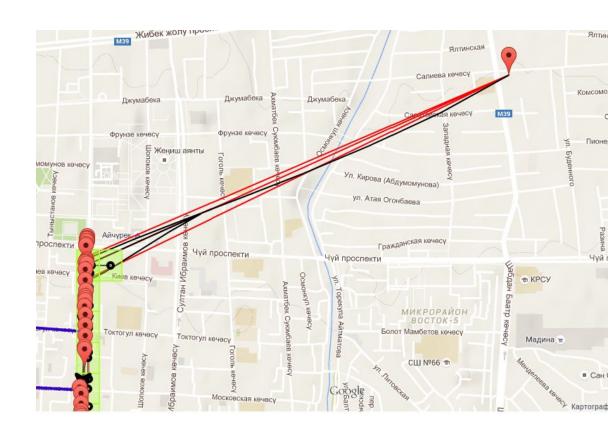
Постановка задачи

 минимизировать ошибку при подсчете расстояния с помощью GPS

Требования к алгоритму:

- работа в реальном времени
- устойчивость ошибки
- низкая сложность вычислений
- работа без предварительных вычислений

Обзор аналогов


- Google Maps Roads API
- Google Directions API
- Яндекс Локатор

Основные идеи:

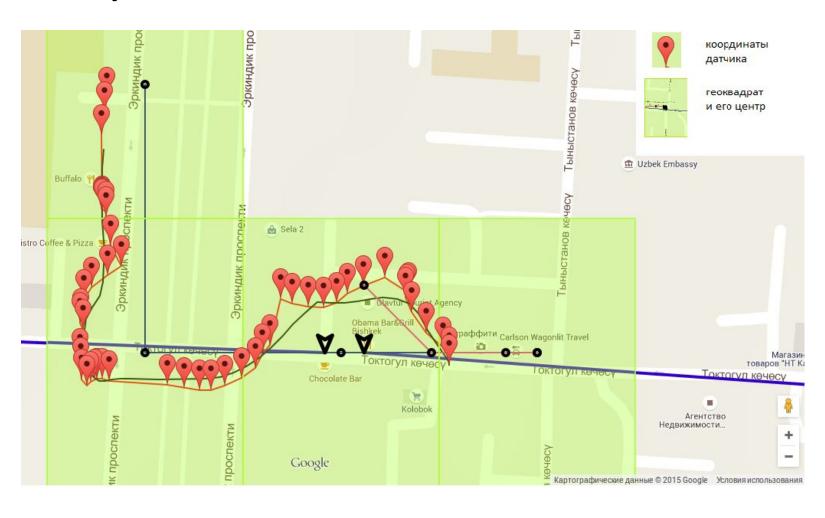
- привязка к дорогам
- сглаживание траектории

Анализ возникающих ошибок

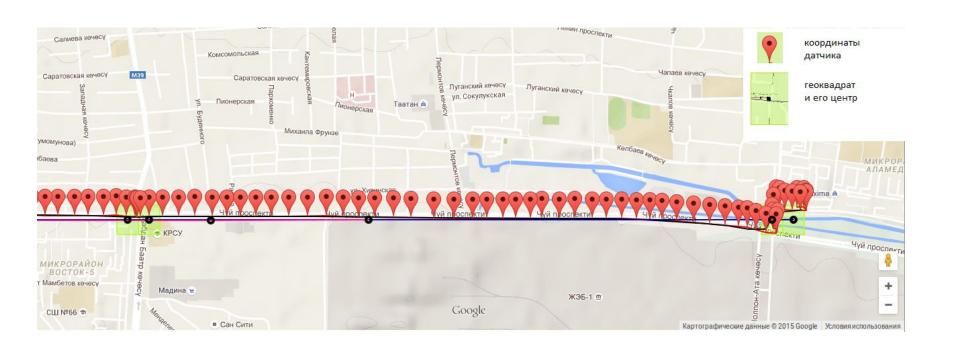
- шумы
- потеря сигнала
- скачки

Сглаживание шумов - фильтр Калмана

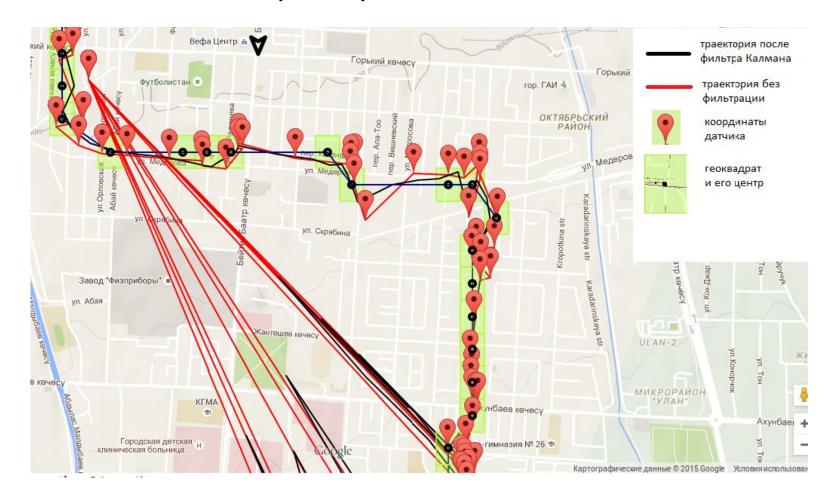
Фильтр Калмана


- + сглаживает шумы
- + работает быстро
- + в реальном времени

- сглаживает повороты
- сглаживает скачки


Метод геоквадратов

Отсев шумов


Метод геоквадратов

Снижение нагрузки на передачу данных

Отсев скачков

- Скорость
- Устойчивый характер скачков

Тестирование и результаты

Неотфильтрованное значение, м.	После фильтра Калмана, м.	После фильтра геоквадратов, м.	Реальное расстояние, м.
65130	29816	11000	11470
226913	79343	8639	5090
19113	16290	16392	16300
24287	25745	23320	23105
8403	7843	8035	7980
9379	8958	9034	9470

Тестирование и результаты

	Неотфильтрованное расстояние, м.	После фильтра Калмана, м.	После фильтра геоквадратов, м.	Реальное расстояние, м.
Среднее	20039,24	11610,6	7546,96	7636,9788
σ	44006,16264	15468,0454	5308,057554	5568,75087
хорошие устройства	9703,833333	8960,333333	8908,666667	9749,166667
σ	6063,207386	5358,011406	5587,641125	6134,598884
средние устройства	8344,461538	7748,461538	7443,923077	7554,230769
σ	6286,897347	6397,221664	5940,658853	5826,26145
плохие устройства	55713,33333	22628,83333	6408,5	5704,078333
σ	79187,96886	26810,38809	3122,02481	3133,474593

Итоги

- Реализован алгоритм, производящий фильтрацию потока GPS координат, для вычисления длины траектории
- Алгоритм успешно обрабатывает шумы, скачки и краткую потерю сигнала связи.
- Обработка происходит близко к реальному времени
- Снижена нагрузка на передачу данных