
Implementation and experimental study of GLL
algorithm with Neo4j graph database

Pogozhelskaya Vlada Vladimirovna, 18.Б11-мм
Supervisor: Ph.D. of Physico-mathematical Sciences, Associate

Professor of the Department of Informatics of St Petersburg State
University S.V. Grigoriev

St Petersburg State University

April 30, 2022

Pogozhelskaya Vlada (SPbU) April 30, 2022 1 / 14

Introduction

Graph data model
▶ Basic entities — graph vertices
▶ Relationships between entities are graph edges

Graph databases
▶ The most popular is Neo4j
▶ Only regular queries are partially supported

Context-free constraints
▶ Strictly more expressive than the regular one
▶ Widely used in bioinformatics, RDF file analysis, static code analysis

Pogozhelskaya Vlada (SPbU) April 30, 2022 2 / 14

Context-free path querying problems

All-paths CFPQ problem and reachability CFPQ problem
Let be:

Context-free grammar G = ⟨N,Σ,P,S⟩
Directed graph D = ⟨V ,E ,T ⟩
Set of start vertices VS ⊆ V and set of final vertices VF ⊆ V

All-paths problem:
Find all paths 𝜋 = (e1, · · · , en−1, en), ek = (vk−1, tk , vk) in graph D,
such as l(𝜋) = t1t2 · · · tn ∈ L(G) and v0 ∈ VS , vn ∈ VF

Reachability problem:
Find all pairs {(v0, vn) | exists a path 𝜋 = (e1, · · · , en−1, en), ek =
(vk−1, tk , vk) in D, v0 ∈ VS , vn ∈ VF , l(𝜋) = t1t2 · · · tn ∈ L(G)}

Pogozhelskaya Vlada (SPbU) April 30, 2022 3 / 14

Motivation

The problem of poor performance of CFPQ algorithms was formulated
by Jochem Kuijpers as a result of an attempt to extend Neo4j1

Later, the matrix-based CFPQ algorithm showed high performance on
real-world data

1An Experimental Study of Context-Free Path Query Evaluation Methods / Jochem
Kuijpers, George Fletcher, Nikolay Yakovets, Tobias Lindaaker / SSDBM ’19

Pogozhelskaya Vlada (SPbU) April 30, 2022 4 / 14

Goal and tasks

The aim of this work is to improve existing CFPQ algorithm for the Neo4j
graph database2 and evaluate it
Tasks:

To make initial experiments and analysis of existing algorithm to
identify performance problems
To refactor the code of the current implementation of the GLL-based
CFPQ algorithm in order to identifying and eliminate performance
problems of the current implementation of the algorithm
To provide an ability to obtain information about both reachability
CFPQ problem in a graph and all paths CFPQ problem
To evaluate the resulting algorithm on real-world graphs and to
compare it with an existing one

2Algoruthm implementation: https://github.com/JetBrains-Research/
GLL4Graph/tree/8be59e6b314a1bfa646b119f751b3f28ad34ac64

Pogozhelskaya Vlada (SPbU) April 30, 2022 5 / 14

https://github.com/JetBrains-Research/GLL4Graph/tree/8be59e6b314a1bfa646b119f751b3f28ad34ac64
https://github.com/JetBrains-Research/GLL4Graph/tree/8be59e6b314a1bfa646b119f751b3f28ad34ac64

Overview

Generalized LL algorithm (GLL)
Supports the entire class of context-free languages
To reconstruct the paths, the Shared Packed Parse Forest (SPPF) is
used

Proposed solution
Based on GLL algorithm implementation in Iguana3 project made at
CWI Amsterdam in 2016
Neo4j graph database is used as a graph storage
The solution was integrated with Neo4j using Native Java API

3Repository of Iguana project: https://github.com/iguana-parser/iguana
Pogozhelskaya Vlada (SPbU) April 30, 2022 6 / 14

https://github.com/iguana-parser/iguana

Initial experiments

An unexpected deterioration in the behavior of the resulting solution was
revealed in the multiple-source scenario

Grammar G2 and Enzyme

Pogozhelskaya Vlada (SPbU) April 30, 2022 7 / 14

Modifications

The modification of the way to get vertices from Neo4j graph database
The optimization of transition between vertices while graph traversal
The optimization of procedure for getting edge labels
The change of result data representation

Query time Median and mean time

Grammar G2 and Enzyme

Pogozhelskaya Vlada (SPbU) April 30, 2022 8 / 14

Extension to solve the reachability problem

The ability to switch between the SPPF construction and reachability facts
calculation was provided

Architecture of the proposed solution

Pogozhelskaya Vlada (SPbU) April 30, 2022 9 / 14

Experimental study setup

Data
RDF Graphs

▶ Grammars

S →subClassOf S subClassOf | type S type

| subClassOf subClassOf | type type
(G1)

S → subClassOf S subClassOf | subClassOf (G2)

S →broaderTransitive S broaderTransitive

| broaderTransitive broaderTransitive
(Geo)

Program analysis graphs
▶ Grammar

M → d V d

V → (M? a)* M? (a M?)*
(PointsTo)

Pogozhelskaya Vlada (SPbU) April 30, 2022 10 / 14

All pairs results for graphs related to RDF analysis

Graphs considered

Results

Pogozhelskaya Vlada (SPbU) April 30, 2022 11 / 14

All pairs results for graphs related to RDF analysis

Graphs considered

Results

Pogozhelskaya Vlada (SPbU) April 30, 2022 11 / 14

All pairs results for graphs related to static code analysis

Graphs considered

Results

Pogozhelskaya Vlada (SPbU) April 30, 2022 12 / 14

All pairs results for graphs related to static code analysis

Graphs considered

Results

Pogozhelskaya Vlada (SPbU) April 30, 2022 12 / 14

Single-source results

Pogozhelskaya Vlada (SPbU) April 30, 2022 13 / 14

Results

There were made initial experiments and analysis which confirmed
performance problems
The performance problems in the implementation of the GLL-based
CFPQ algorithm were eliminated
The implementation of GLL-based CFPQ algorithm was extended with
ability to solve the reachability CFPQ problem
The resulting algorithm implementation was evaluated on two sets of
real-world graphs: a number of graphs related to RDF analysis and a
number of graph related to static code analysis problem for both the
all pairs and the multiple sources scenarios. The evaluation shows that
the proposed algorithm is more than 45 times faster than the previous
solution for Neo4j

Pogozhelskaya Vlada (SPbU) April 30, 2022 14 / 14

