

Implementation and experimental study of GLL algorithm with Neo4j graph database

Pogozhelskaya Vlada Vladimirovna, 18.Б11-мм Supervisor: Ph.D. of Physico-mathematical Sciences, Associate Professor of the Department of Informatics of St Petersburg State University S.V. Grigoriev

St Petersburg State University

April 30, 2022

- Graph data model
 - Basic entities graph vertices
 - Relationships between entities are graph edges
- Graph databases
 - The most popular is Neo4j
 - Only regular queries are partially supported
- Context-free constraints
 - Strictly more expressive than the regular one
 - ► Widely used in bioinformatics, RDF file analysis, static code analysis

Context-free path querying problems

All-paths CFPQ problem and reachability CFPQ problem *Let be:*

- Context-free grammar $\mathbb{G} = \langle N, \Sigma, P, S \rangle$
- Directed graph $\mathbb{D} = \langle V, E, T \rangle$
- Set of start vertices $V_S \subseteq V$ and set of final vertices $V_F \subseteq V$

All-paths problem:

• Find all paths $\pi = (e_1, \dots, e_{n-1}, e_n)$, $e_k = (v_{k-1}, t_k, v_k)$ in graph \mathbb{D} , such as $I(\pi) = t_1 t_2 \cdots t_n \in L(\mathbb{G})$ and $v_0 \in V_S$, $v_n \in V_F$

Reachability problem:

• Find all pairs $\{(v_0, v_n) \mid exists \ a \ path \ \pi = (e_1, \cdots, e_{n-1}, e_n), \ e_k = (v_{k-1}, t_k, v_k) \ in \ \mathbb{D}, \ v_0 \in V_S, \ v_n \in V_F, \ l(\pi) = t_1 t_2 \cdots t_n \in L(\mathbb{G})\}$

- The problem of poor performance of CFPQ algorithms was formulated by Jochem Kuijpers as a result of an attempt to extend Neo4j¹
- Later, the matrix-based CFPQ algorithm showed high performance on real-world data

¹An Experimental Study of Context-Free Path Query Evaluation Methods / Jochem Kuijpers, George Fletcher, Nikolay Yakovets, Tobias Lindaaker / SSDBM '19

The aim of this work is to improve existing CFPQ algorithm for the Neo4j graph database² and evaluate it Tasks:

- To make initial experiments and analysis of existing algorithm to identify performance problems
- To refactor the code of the current implementation of the GLL-based CFPQ algorithm in order to identifying and eliminate performance problems of the current implementation of the algorithm
- To provide an ability to obtain information about both reachability CFPQ problem in a graph and all paths CFPQ problem
- To evaluate the resulting algorithm on real-world graphs and to compare it with an existing one

Pogozhelskaya Vlada (SPbU)

²Algoruthm implementation: https://github.com/JetBrains-Research/ GLL4Graph/tree/8be59e6b314a1bfa646b119f751b3f28ad34ac64

Generalized LL algorithm (GLL)

- Supports the entire class of context-free languages
- To reconstruct the paths, the Shared Packed Parse Forest (SPPF) is used

Proposed solution

- Based on GLL algorithm implementation in Iguana³ project made at CWI Amsterdam in 2016
- Neo4j graph database is used as a graph storage
- The solution was integrated with Neo4j using Native Java API

³Repository of Iguana project: https://github.com/iguana-parser/iguana Pogozhelskava Vlada (SPbU) April 30, 2022

Initial experiments

An unexpected deterioration in the behavior of the resulting solution was revealed in the multiple-source scenario

Grammar G_2 and Enzyme

Modifications

- The modification of the way to get vertices from Neo4j graph database
- The optimization of transition between vertices while graph traversal
- The optimization of procedure for getting edge labels
- The change of result data representation

Query time

Median and mean time

Grammar G_2 and Enzyme

Extension to solve the reachability problem

The ability to switch between the SPPF construction and reachability facts calculation was provided

Architecture of the proposed solution

9/14

Experimental study setup

Data

- RDF Graphs
 - Grammars

 $S \rightarrow \overline{subClassOf} S subClassOf | \overline{type} S type$ $| \overline{subClassOf} subClassOf | \overline{type} type$

 $S \rightarrow \overline{subClassOf} S subClassOf | subClassOf$

 $S \rightarrow broaderTransitive S \overline{broaderTransitive}$ | $broaderTransitive \overline{broaderTransitive}$

 (G_1)

 (G_2)

Program analysis graphs

Grammar

$$egin{array}{lll} M
ightarrow \overline{d} & V & d \ V
ightarrow (M? \ \overline{a})^* & M? \ (a \ M?)^* \end{array}$$

All pairs results for graphs related to RDF analysis

Graphs	V	E	#subClassOf	#type	#broaderTransitive
Core	1 323	2 752	178	0.	0
Pathways	6 238	$12 \ 363$	$3\ 117$	$3\ 118$	0
Go hierarchy	45 007	490 109	490 109	0	0
Enzyme	48 815	86 543	8 163	14 989	8 156
Eclass	$239\ 111$	$360\ 248$	$90\ 962$	72 517	0
Geospecies	450 609	$2\ 201\ 532$	0	89 065	20 867
Go	$582 \ 929$	$1\ 437\ 437$	94 514	$226 \ 481$	0
Taxonomy	$5\ 728\ 398$	$14 \ 922 \ 125$	$2\ 112\ 637$	2 508 635	0

Graphs considered

Nesuits						
Graphs	G_1		G_2		Geo	
	time (sec)	#answer	time (sec)	#answer	time (sec)	#answer
Core	0,02	204	0,01	214	-	-
Pathways	0,07	884	0,04	3117	-	-
Go hierarchy	3,68	$588 \ 976$	5,4	738 937	-	-
Enzyme	0,22	396	0,17	8163	5,7	$14\ 267\ 542$
Eclass	1,5	$90 \ 994$	0,98	96 163	-	-
Geospecies	2,87	85	2,65	0	145,8	$226 \ 669 \ 749$
Go	5,56	$640 \ 316$	4,2	659 501	-	-
Taxonomy	45,47	151 706	36,07	$2\ 112\ 637$	-	-

Results

All pairs results for graphs related to RDF analysis

Graphs	V	E	#subClassOf	#type	#broaderTransitive
Core	1 323	2 752	178	0.	0
Pathways	$6\ 238$	$12 \ 363$	$3\ 117$	$3\ 118$	0
Go hierarchy	45 007	490 109	490 109	0	0
Enzyme	48 815	86 543	8 163	14 989	8 156
Eclass	$239\ 111$	$360\ 248$	$90\ 962$	72 517	0
Geospecies	450 609	$2\ 201\ 532$	0	89 065	20 867
Go	$582 \ 929$	$1\ 437\ 437$	94 514	$226 \ 481$	0
Taxonomy	$5\ 728\ 398$	$14 \ 922 \ 125$	$2\ 112\ 637$	2 508 635	0

Graphs considered

T(CSUILS						
Graphs	G	1	G_2		Geo	
	time (sec)	#answer	time (sec)	#answer	time (sec)	#answer
Core	0,02	204	0,01	214	-	_
Pathways	0,07	884	0,04	3117	-	_
Go hierarchy	3,68	$588 \ 976$	5,4	738 937	-	-
Enzyme	0,22	396	0,17	8163	5,7	$14\ 267\ 542$
Eclass	1,5	90 994	0,98	96 163	-	_
Geospecies	2,87	85	2,65	0	145,8	$226 \ 669 \ 749$
Go	5,56	$640 \ 316$	4,2	659 501	-	-
Taxonomy	45,47	151 706	36,07	$2\ 112\ 637$	-	-

Results

All pairs results for graphs related to static code analysis

Graphs considered

Graphs	V	E	#a	#d
Apache	$1 \ 721 \ 418$	$1 \ 510 \ 411$	362 799	$1 \ 147 \ 612$
Block	$3\ 423\ 234$	$2 \ 951 \ 393$	$669\ 238$	$2 \ 282 \ 155$
Net	$4 \ 039 \ 470$	3 500 141	$807\ 162$	2 692 979
Postgre	$5\ 203\ 419$	4 678 543	$1\ 209\ 597$	$3 \ 468 \ 946$
Init	$2\ 446\ 224$	$2 \ 112 \ 809$	$481 \ 994$	$1 \ 630 \ 815$
Drivers	$4\ 273\ 803$	3 707 769	858568	2 849 201
Kernel	$11\ 254\ 434$	$9 \ 484 \ 213$	$1 \ 981 \ 258$	$7 \ 502 \ 955$

Results

Graphs	PointsTo				
	GLL time (sec)	#answer	Matrix time (sec)		
Apache	_	92 806 768	536,703		
Block	$113,\!01$	$53 \ 514 \ 095$	$123,\!88$		
Net	$160,\!64$	$8\ 833\ 403$	206,29		
Postgre	_	$90 \ 661 \ 446$	969,89		
Init	$87,\!25$	$3\ 783\ 769$	$45,\!84$		
Drivers	$371,\!18$	$18 \ 825 \ 025$	279,39		
Kernel	$614,\!05$	16 747 731	378,05		

Pogozhelskaya Vlada (SPbU)

All pairs results for graphs related to static code analysis

Graphs considered

Graphs	V	E	#a	#d
Apache	$1 \ 721 \ 418$	$1 \ 510 \ 411$	362 799	$1 \ 147 \ 612$
Block	$3\ 423\ 234$	$2 \ 951 \ 393$	$669\ 238$	$2 \ 282 \ 155$
Net	$4 \ 039 \ 470$	3 500 141	$807\ 162$	2 692 979
Postgre	$5\ 203\ 419$	4 678 543	$1\ 209\ 597$	$3 \ 468 \ 946$
Init	$2\ 446\ 224$	$2 \ 112 \ 809$	$481 \ 994$	$1 \ 630 \ 815$
Drivers	$4\ 273\ 803$	3 707 769	858568	2 849 201
Kernel	$11\ 254\ 434$	$9 \ 484 \ 213$	$1 \ 981 \ 258$	$7 \ 502 \ 955$

Results						
Graphs	PointsTo					
	GLL time (sec)	#answer	Matrix time (sec)			
Apache	-	92 806 768	536,703			
Block	113,01	$53 \ 514 \ 095$	$123,\!88$			
Net	$160,\!64$	8 833 403	206,29			
Postgre	-	$90\ 661\ 446$	969, 89			
Init	87,25	$3\ 783\ 769$	$45,\!84$			
Drivers	$371,\!18$	$18 \ 825 \ 025$	279,39			
Kernel	614.05	16 747 731	378.05			

Pogozhelskaya Vlada (SPbU)

Single-source results

Results

- There were made initial experiments and analysis which confirmed performance problems
- The performance problems in the implementation of the GLL-based CFPQ algorithm were eliminated
- The implementation of GLL-based CFPQ algorithm was extended with ability to solve the reachability CFPQ problem
- The resulting algorithm implementation was evaluated on two sets of real-world graphs: a number of graphs related to RDF analysis and a number of graph related to static code analysis problem for both the *all pairs* and the *multiple sources* scenarios. The evaluation shows that the proposed algorithm is more than 45 times faster than the previous solution for Neo4j