Санкт-Петербургский государственный университет

Кафедра системного программирования

Группа 21.Б11-мм

# Инструмент графического программирования 2G

## Евдокимов Данил

Отчёт по учебной практике в форме «Производственное задание»

Научный руководитель: профессор кафедры системного программирования, д.ф.-м.н. А.Н. Терехов

Консультант: главный конструктор ООО «ЛИС» В.О. Аксенов

Санкт-Петербург 2023

# Оглавление

| Be | Введение          |                                                      |    |
|----|-------------------|------------------------------------------------------|----|
| 1. | Постановка задачи |                                                      | 4  |
|    | 1.1.              | Обзор предметной области                             | 4  |
|    | 1.2.              | Обзор аналогов                                       | 7  |
|    | 1.3.              | Выбор редактора диаграмм                             | 8  |
| 2. | . Реализация      |                                                      | 10 |
|    | 2.1.              | Преобразование данных из Draw.io в конфигурационные  |    |
|    |                   | файлы устройств                                      | 10 |
|    | 2.2.              | Передача данных из конфигурационных файлов устройств |    |
|    |                   | обратно в Draw.io                                    | 12 |
| За | Заключение        |                                                      |    |
| Ст | Список литературы |                                                      |    |

## Введение

Сети 2G, введенные в начале 1990-х годов, уже более тридцати лет являются основой мобильной связи. Традиционно, настройка и управление этими сетями осуществлялись высококвалифицированными специалистами из сферы телекоммуникаций. Однако, в последнее время наблюдается тенденция к расширению применения технологий 2G за пределы их обычного использования, например, в промышленности и транспорте.

Компании стремятся интегрировать эти устоявшиеся технологии в свою деятельность, при этом минимизируя затраты. Но на многих предприятиях отсутствуют сотрудники с необходимой квалификацией для управления сетями. В этой ситуации возможны два решения. Первое — обучение сотрудников новым технологиям, что может быть дорогостоящим и времязатратным. Второе - упрощение процесса настройки сетей, сделав его более доступным для людей без специализированных знаний в области сетей. Это позволит экономить ресурсы на переподготовку или найм новых сотрудников.

В ответ на эту потребность, компании «Mobil-group» [6] и «ЛИС» [9] решили разработать программный комплекс для настройки сетей 2G с использованием графического программирования. Этот выбор был сделан из-за доступности и понятности графических средств разработки для людей с минимальными навыками в программировании.

Предполагается, что продукт будет поставляться предприятиям в виде комплекта программного обеспечения, включающего в себя графический редактор диаграмм и службу для работы с файлами, устанавливаемого на специализированные компьютеры — локальные терминалы управления (LMT) или на серверы централизованного управления.

## 1. Постановка задачи

Цель работы — разработать инструмент графического программирования оборудования сети 2G. Для достижения цели были поставлены следующие задачи:

- Выполнить обзор предметной области и создать подробную диаграмму элементов сети 2G;
- Разработать блок-схему работы каждого из видов оборудования сети 2G;
- Выполнить обзор существующих решений для графической настройки сетей 2G;
- Выработать требования к графическому редактору диаграмм, который будет взят за основу приложения, и в соответствии с разработанными требованиями выполнить обзор редакторов;
- Реализовать конвертацию файлов диаграмм в формат конфигурационных файлов оборудования сети 2G и обратно;
- Реализовать службу/демон для взаимодействия с графическим редактором;
- Реализовать unit-тесты для проверки функциональности разработанного программного комплекса;
- Провести апробацию продукта, тестируя его на оборудовании сети 2G.

#### 1.1. Обзор предметной области

Сеть 2G, также известная как GSM, состоит из различных элементов, которые взаимодействуют между собой посредством установленных протоколов. На диаграмме 1 представлены ключевые компоненты сети 2G и протоколы, используемые для их взаимодействия, распределенные по уровням сетевой модели OSI. Далее приведено более детальное описание каждого элемента:

- Mobile Station (MS) мобильная станция или абонентское устройство.
- Base Transceiver Station (BTS) базовая передающая станция, основная задача которой передача и прием сигналов от/к мобильным устройствам.
- Base Station Controller (BSC) контроллер базовых станций, управляющий несколькими BTS.
- Mobile Switching Centre (MSC) центр коммутации мобильной связи, управляющий вызовами и мобильностью абонентов.
- Visitor Location Register (VLR) регистр местонахождения посетителей, временно хранит данные об абонентах.
- Home Location Register (HLR) центральная база данных с информацией об абонентах и их услугах.
- Authentication Centre (AuC) центр аутентификации для проверки подлинности абонентов.
- Equipment Identity Register (EIR) регистр идентификации оборудования.
- Gateway Mobile Switching Centre (GMSC) шлюзовой центр коммутации, обеспечивает взаимодействие с другими сетями.
- Serving GPRS Support Node (SGSN) узел поддержки GPRS, управляет передачей данных в сетях 2G и 3G.
- Gateway GPRS Support Node (GGSN) шлюзовой узел поддержки GPRS, обеспечивает доступ к внешним сетям.

- Policy and Charging Rules Function (PCRF) узел для управления тарификацией и качеством соединений.
- Application Function (AF) функция приложения, взаимодействует с PCRF для реализации политик качества обслуживания.
- Public Data Network (PDN) внешняя сеть, к которой подключаются абонентские устройства.
- Media Gateway (MGW) шлюз мультимедиа, обеспечивает пересылку голосовых и видеоданных.



Рис. 1: Диаграмма компонентов сети 2G

#### 1.2. Обзор аналогов

Данный раздел содержит обзор графических приложений для управления настройками сетевого оборудования, которые могут быть применимы в сетях 2G:

- 1. Сізсо Packet Tracer [1] симулятор сети передачи данных, выпускаемый Сізсо Systems. Решение позволяет создавать работоспособные модели сети, а также настраивать командами Сізсо IOS маршрутизаторы и коммутаторы. Приложение используют только в учебных целях, а не в качестве замены маршрутизаторам и коммутаторам. Помимо этого, Packet Tracer поддерживает только создание конфигурационных файлов, а передача их на реальное оборудование не реализована;
- NetSim [7] образовательный инструмент для моделирования сетей. Подходит для обучения и тестирования сетевых конфигураций. Ограничен в функциональности по сравнению с реальными сетями, больше подходит для учебных целей;
- 3. Spirent Communications [8] предлагает решения для тестирования и оптимизации сетей. Позволяет проводить тщательное тестирование сетей на производительность и надежность. Фокусируется на тестировании, не является инструментом для повседневного управления сетью;
- 4. The Dude [3] программное обеспечение от MikroTik для управления сетевым оборудованием. Интуитивно понятный графический интерфейс, хорошо подходит для средних и малых сетей. Ограничен функциональностью и масштабируемостью, больше подходит для более простых сетевых задач.

Эти решения были выбраны для сравнения, учитывая их схожую функциональность с разрабатываемым в рамках данной работы программным обеспечением. Отмечено, что аналогов, полностью соответствующих требованиям работы с сетями 2G, найдено не было.

#### 1.3. Выбор редактора диаграмм

Перед началом работы стоял выбор между разработкой собственного графического интерфейса и использованием существующего редактора диаграмм. Выбор пал на второй вариант, поскольку это позволяло ускорить процесс разработки.

Требования к выбранному редактору диаграмм:

- Добавление и сохранение метаданных элементов диаграмм, что критично для внесения данных о параметрах оборудования в сетях LTE;
- Способность экспортировать диаграммы не только в визуальном формате, но также и в форме кода на языках разметки, таких как XML или HTML;
- Наличие лицензии, которая допускает использование редактора в создании коммерческого программного обеспечения.

Был проведен анализ ряда популярных решений на соответствие вышеуказанным критериям:

- 1. Lucidchart [4] это веб-инструмент для создания визуальных представлений, включая блок-схемы и диаграммы. Имеет простой и интуитивно понятный интерфейс, но не поддерживает добавление метаданных к элементам диаграмм. Возможности экспорта ограничиваются графическими форматами и CSV;
- 2. Microsoft Visio [5] это редактор диаграмм от Microsoft, первоначально разработанный как настольное приложение для Windows. Впоследствии появилась версия для работы через браузер с возможностью хранения проектов в облаке. Поддерживает экспорт в формате .vsdx, который представляет собой архив с данными Visio, включая XML-файлы. Visio позволяет хранить метаданные элементов диаграмм, однако эта функция отсутствует в бесплатной версии;

3. Draw.io [2] (или Diagrams.net в веб-версии) — это десктопный редактор диаграмм с поддержкой добавления метаданных к частям диаграмм, которые хранятся в атрибутах XML-файла. Поддерживает экспорт в формате XML. Обладает открытым исходным кодом и лицензией Apache 2.0, позволяющей использовать его в коммерческих целях.

После анализа выбор был сделан в пользу Draw.io, так как он полностью удовлетворял всем требованиям для работы с сетями 2G.

# 2. Реализация



Рис. 2: Диаграмма использования инструмента

# 2.1. Преобразование данных из Draw.io в конфигурационные файлы устройств

На рисунке 3 показан пример схемы, созданной в Draw.io. Для изменения параметров элемента пользователь должен кликнуть по нему правой кнопкой мыши и выбрать опцию «Редактировать данные», что приведет к открытию окна для редактирования параметров.



Рис. 3: Пример сетевой диаграммы

На рисунке 4 точки в названиях свойств обозначают иерархию в исходном конфигурационном файле для vty.



Рис. 4: Атрибуты в Draw.io и соответствующий конфигурационный файл

Затем диаграмма с внесенными данными экспортируется в XML формате. В Draw.io эти параметры сохраняются в атрибутах XML элементов, где поддерживаются только строковые значения. После этого XML файл отправляется в конвертер, который анализирует XML и преобразует его в граф.

Дальше перед формированием конфигурационного файла из графа проходит проверка параметров. В случае обнаружения ошибок, данные не будут зафиксированы. Если параметры верны, новый конфигурационный файл отправляется на устройство. Проверка осуществляется благодаря созданным деревьям языка команд vty, в которых полностью описаны правила формирования команд. После загрузки конфигурации на устройство, с его стороны идет отчет о успешности или неудаче запуска. Демон получает это сообщение и изменяет параметры элемента на диаграмме, например, меняя его цвет на зеленый или красный в зависимости от результата.

# 2.2. Передача данных из конфигурационных файлов устройств обратно в Draw.io

Существуют случаи, когда изменения на устройстве происходят без участия пользователя, например, когда конфигурационные файлы изменяются напрямую. В таком случае процесс идет в обратном направлении. Новый конфигурационный файл отправляется в конвертер, который сначала создает граф, его анализирует, а затем формирует соответствующий XML файл для Draw.io.

## Заключение

В ходе выполнения работы были достигнуты следующие результаты:

- Проведен анализ предметной области и создана детализированная диаграмма компонентов 2G сети;
- Исследованы доступные решения для визуальной настройки сетевых систем;
- Сформулированы критерии для выбора графического редактора диаграмм в качестве основы для приложения, после чего выполнен анализ подходящих редакторов;
- Разработаны деревья языка команд vty для последующей валидации;
- Разработана функция преобразования файлов из диаграмм в конфигурационные файлы оборудования и обратно.

Исходный код проекта является проприетарным и не подлежит разглашению.

Планируемые следующие шаги включают:

- Разработку функции валидации;
- Создание сервиса или демона для взаимодействия с графическим редактором;
- Реализацию unit-тестов для проверки работоспособности разработанного программного комплекса;
- Проведение практических испытаний продукта на оборудовании сети 2G.

### Список литературы

- [1] Cisco Packet Tracer. URL: https://www.netacad.com/ru/ cosurses/packet-tracer (дата обращения: 2023-12-21).
- [2] Draw.io. URL: https://www.drawio.com (дата обращения: 2023-12-15).
- [3] The Dude. URL: https://mikrotik.com/thedude (дата обращения: 2023-12-21).
- [4] Lucidchart. URL: https://www.lucidchart.com/pages/ (дата обращения: 2023-12-21).
- [5] Microsoft Visio. URL: https://www.microsoft.com/ru-ru/ microsoft-365/visio/flowchart-software (дата обращения: 2023-12-15).
- [6] Mobil-Group. URL: https://mobil-group.spb.ru/ (дата обращения: 2023-12-15).
- [7] NetSim. URL: https://www.boson.com/ netsim-cisco-network-simulator (дата обращения: 2023-12-21).
- [8] Spirent. URL: https://www.spirent.com/ (дата обращения: 2023-12-21).
- [9] ЛИС. URL: https://labics.ru/ (дата обращения: 2023-12-15).